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Abstract. Simple non-adiabatic model Hamiltonians are treated using the realisation of 
the vibrational modes on Bargmann’s Hilbert space of analytic functions. In this formula- 
tion the Schrodinger equation is a system of linear first-order differential equations. The 
energy eigenvalues are selected by the requirement that the solutions belong to the space 
of entire functions. The solutions are given in terms of Neumann series; the recurrence 
relationb for the expansion coefficients have a simple structure. Under particular conditions 
for the interaction constant they allow for terminating Neumann series (isolated exact 
solutions). In the general case the conditions for the eigenvalues are transcendental 
equations involving a continued fraction. The continued fraction can be approximated to 
any desired degree of accuracy in a rapidly convergent process based on Worpitzky’s 
theorem and its relation to conformal mapping. The eigenvalues are calculated; a physical 
interpretation of the solutions which makes use of intuitive arguments is also given. 

1. Introduction 

Until recently even the simplest non-adiabatic systems have only been treated numeri- 
cally and approximately. One example is the dynamical Jahn-Teller and pseudo 
Jahn-Teller effect in which vibrational modes interact with electronic levels. The best 
understood approximate treatments by Barentzen (1979), Barentzen et a1 (198 1) and 
Schmutz (1980) are based on work by Judd (1977). In the numerical treatment 
(Longuet Higgins et a1 1958, Thorson and Moffitt 1967, Grevsmuhl 1981) the eigen- 
functions are expanded in the occupation number basis. Recurrence relations between 
the expansion coefficients are provided by the Hamiltonian matrix, which is suitably 
truncated and whose determinant gives the eigenvalues. For an accurate determination 
of the first few eigenvalues a matrix of dimension N > 100 is used. 

A second and even simpler example, an electron hopping between two sites and 
interacting with one vibrational mode, has been treated numerically by Schirmer (1980). 
The Hamiltonian of this system makes its appearance also in optics. Here it describes 
a two-level atom interacting with one linearly polarised radiation mode. In contradis- 
tinction to the solid state analogue, the interaction constant is much smaller in tbe 
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optical case. This leads to drastic simplifications: The system can be treated in RWA, 

i.e. by discarding half of the interaction and keeping only the nearly resonant terms. 
The RWA Hamiltonian can be solved exactly (Jaynes and Cummings 1963, see also 
Louise11 1964, 1973, Allen and Eberly 1975, Sargent et a1 1974). The Hilbert space 
decomposes in a series of doublets. The solution is realistic for small detuning and 
not too high light intensity, as long as neighbouring doublets do not intersect (Mollow 
1982). The solution has been explicitly used by Stroud (1971), Cohen-Tannoudji 
(1977), Series (1977), Carmichael and Walls (1976) in the theory of resonance 
fluorescence and the AC Stark effect. (See also Cresser et a1 1982.) 

Important progress towards an exact solution of these simple non-adiabatic model 
systems has been made in the Jahn-Teller field. Thorson and Moffitt (1967) had 
already observed that for particular rational values of the interaction constant, rational 
energy eigenvalues either in the ground state or in an excited state emerged from 
their numerical calculations. This suggests a particularly simple structure of the 
solutions for the set of isolated interaction constants. In an important paper, ’Judd 
(1979) derived exact rational expressions for the isolated values of the interaction 
constant and with those determined the coefficients of the eigenfunction in the 
occupation number basis. Our own contribution started from here, because we wanted 
in the first place an easier and more systematic way to get at Judd’s isolated exact 
solutions. (Anybody who has tried to repeat Judd’s original calculation will appreciate 
this point.) We hoped that a better understanding of the isolated solutions would 
enable us to interpolate between the different isolated solutions in one branch and 
thereby to find the general solution. Our approach is as follows. We convert the 
recurrence relations into a system of differential equations whose solutions are required 
to belong to the space of entire functions. This determines the eigenvalues (Reik 
1980). Instead of a power series expansion of the entire functions we use a Neumann 
series expansion (Reik et a1 1981a). To determine the eigenvalues with Thorson and 
Moffitt’s (1967) accuracy only very few terms in the Neumann expansion are needed 
(Reik et a1 1981b). A proof of convergence has been given (Reik and Nusser 1981); 
the general exact solution of the Jahn-Teller case is therefore established. Judd’s 
isolated exact solutions correspond to terminating Neumann series (Reik et a1 198 la ) .  
Our approach must be considered as partly experimental, as far as the derivation of 
the system of differential equations goes. It has however been felt from the beginning 
that this was a vital step and not just a trick. In this paper we want to put our approach 
on a firm theoretical basis and at the same time to extend its applicability to other 
simple non-adiabatic systems. 

In 0 2 we consider two non-adiabatic model Hamiltonians. By the realisation of 
the phonons (photons) on Bargmann’s Hilbert space of analytical functions (Bargmann 
1961, 1962) we obtain a system of differential equations which allows us to treat the 
two model Hamiltonians on the same footing and which contains the Jahn-Teller 
differential equations as a special case. In $ 3 the solutions are expanded in Neumann 
series and the recurrence relations for the expansion coefficients are given. The 
conditions for finite Neumann series contain Judd’s conditions for the isolated exact 
solutions as special cases. In 0 4  the eigenvalues are determined by a condition 
involving a continued fraction. The value of the continued fraction is given by one 
of the two fixed points of a sequence of Moebius transformations. It can be calculated 
to any desired degree of accuracy depending on the length of the sequence. In 
0 5 we discuss special cases and give a physical interpretation of the mathematical 
procedure. 
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As a consequence we have 
+ a:+) + 6, U ( + )  -, 8/86? U ( - )  -, 7, U ( - )  + a/a7 (2.11) 

14)J+1/2 6’4(z)lt)+6”’f(z)15.> (2.12) 

and 

where 

Z = e * q .  (2.13) 

The Hamiltonian h(+) is given by 

h(+) = 7 8 / 8 7  + 8v2 + K [(wag + 77 )v(+) + (a/a7 +5)(+(-,1. (2.14) 

Insertion of (2.12)-(2.14) in (2.8) leads after collecting the spin up and spin down 
components to two coupled differential equations for 4 (z)  and f ( z )  

z dd(z) /dz - ( E  - S ) ~ ( Z ) + K [ Z  df(z)/dz + ( j + l  +z)f(z)]=O, 

K(d4(z)/dz + d ( Z ) ) + z  df(z)/dz - ( E  + S ) f ( z ) = O .  

(2.15) 

(2.16) 

The eigenvalues are selected by the requirement that 4 ( z )  and f ( z )  belong to the 
space of entire functions. The fact that the differential equations are ordinary in the 
single variable z reflects the parabosonic nature of the Hamiltonian (2.1) (Schmutz 
1980). 

Eigenfunctions of the Hamiltonian (2.1) with negative eigenvalues of the angular 
(or crystal) momentum are found in a similar way. Note that 

( 2 . 3 ~ )  14)-J-1/2 = at$+”x(a ~+)u;-))lo)l~ + u;L)n(a;+)a;-,)lo)l5.) 

are eigenfunctions of the angular momentum operator with negative eigenvalues 

( 2 . 4 ~ )  1 J14)-J-1~* = (-j-~)l+)-j-~/** 

Next write 

(2%) 1 H/2hwo= -2J + h(- ) ,  

h(-)=U:+)a(+)+(S +$)VZ + K [ ( U ( + ) + U ; - , ) V ( + ) + ( U ( - ) + U : + j ) v ( - ) ] ,  ( 2 . 6 ~ )  

and use the Bargmann Hilbert space of analytical functions 

14)-J-1/2 = 7 ’+lX (z )It) ‘7 ’n(z  )lJ)? (2.12a) 

( 2 . 1 4 ~ )  h(+ = 6 8/86 + (8 + bZ + K [@/at  + v)v(+) + (a/av + ~ ) v ( - , I .  

The Schrodinger equation 

h ~ - & - ~ - i / ~  = E 14)-J-i/2 ( 2 . 8 ~ )  

then leads to the system of differential equations for x (z )  and n(z) 

2 dfl(z)/dz-(E+S+;)fl(Z)+K[Z d x ( ~ ) / d z + ( j + l + ~ ) , ~ ( ~ ) ] = O ,  ( 2 . 1 5 ~ )  

K(dn(z)/dz +n(t))+z dx( t ) /dz  - ( E  -8 -;)x(z)=O. ( 2 . 1 6 ~ )  

These are the same equations as (2.15), (2.16) with S replaced by -a-$. One has 
therefore to solve equations (2.15), (2.16) for S and -8 -$  in order to get all energy 
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eigenfunctions. Then 
n(z,S) = 4 (2, -6 - $1, (2.17) 

(2.18) 

For degenerate electronic levels A = 0, S = -$ and the energy eigenstates for positive 
and negative angular momentum are degenerate. 

1 
x ( z ,  8) =f(z, -8 -5). 

We now proceed to an apparently different Hamiltonian 

h =H/hwo= b'b +($+2S)(+, + f i K ( b  +b+)(c+c+)+u(-))  (2.19) 

which describes the interaction of one linearly polarised radiation mode with a spin 
$ (or equivalently a two-level atom). There is an equivalent interpretation as the 
Hamiltonian of a small polaron with two lattice sites under the influence of a hopping 
term with the transfer integral ($+28) (Holstein 1959, Reik 1972, Schirmer 1980). 
We shall show that this Hamiltonian leads to a special case of equations (2.15), (2.16) 
with a fictitious value j = -f. This is the bosonic limit, which in the Jahn-Teller case 
has been treated by Judd (1977), Barentzen (1979), Barentzen et a1 (1981) and 
Schmutz (1980). 

We use again the Bargmann space, i.e. 
b+-*t ,  b + dId5, (2.20) 

(2.21) h = d/d5 + ($ + 2 8 ) ~ ~  + 45, (6 + d/de)(c+(+) + c(-)) 
and the following ansatz for the wavefunction 

141) = 41(5)lt)+ (~/J~)5fl(5)1.1>. 
The Schrodinger equation 

(2.22) 

h IrLd = A 141) (2.23) 

leads after collecting spin up and spin down components to the system of coupled 
differential equations 

(2.25) 

which are different from (2.15), (2.16). One recovers a special case of equations (2.15), 
(2.16) by substituting 

(2.26) z = 5 5  f 

A = 2 ~  +$. (2.27) 

1 2  

We then obtain 

z dc$l(z)/dz - ( E  - - S ) ~ ~ ( Z ) + K [ Z  d f l ( ~ ) / d ~  +($+z)fl(z)]=O, (2.28) 

K (d4i(z)/dz +(bi(Z))+Zdfi(Z)/dZ - ( E  +S)fi(z)=O. (2.29) 

It is seen that (2.15), (2.16) reduce to (2.28), (2.29) for j = -f. The ansatz (2.22) and 
therefore the solutions (2.28), (2.29) do however not exhaust the eigenfunctions of 
the Hamiltonian (2.21). This is seen by using a second ansatz 

142) = (1/J~)542(5)/t) +f2(5)1.1>. 
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By the same analysis one finds instead of (2.28), (2.29) 

z dfZ(z)/dz - ( E  +S +&Z(Z)+K[Z dqba(z)/dz + ( f + 2 ) 4 2 ( 2 ) ] = 0 ,  

K(dfz(Z)/dz +f2(z))+z d b ( z ) / d z  - (E - 8  -h#~z(z )  = o  
and 

( 2 . 2 8 ~ )  

( 2 . 2 9 ~ )  

fz(z, 8 )  = 41(z, -6 -9 ,  42(2,8) =f1(z, -8 4. (2.30) 

Schweber (1967) treated the Hamiltonian (2.19) in the Bargmann Hilbert space. His 
system of differential equations is slightly different from (2.24), (2.25) because a 
different ansatz for the wavefunctions 

II, = (5)IT) +f(5)1.1) 
was used. 

We have shown that all the eigenfunctions of the Hamiltonians (2.1) and (2.19) 
are solutions of the differential equations (2.15), (2.16). We now proceed to the 
solution of these equations. 

3. Expansion of the solutions in Neumann series, Elementary solutions 

Equations (2.15), (2.16) for the special value 8 = -$were first obtained in the context 
of an apparently different problem: the solution of the Longuet Higgins (Longuet 
Higgins et a1 1958) and Thorson and Moffitt (1967) recurrence relation for the 
dynamical Jahn-Teller effect in simple systems (Reik 1980, Reik et a1 1981b, Reik 
and Nusser 1981). Here we give the solution of (2.15), (2.16) for arbitrary values of 
8, using a procedure (Reik et a1 1981a) which remains applicable in the general case: 
the solutions 4 ( z )  and f ( z )  are represented by a Neumann series expansion, instead 
of a power series expansion, 

(3.1) 

where C is a normalisation constant. If furthermore E in (2.1% (2.16) is eliminated 
in favour of v ,  

(3.3) & = V/2 - j /2  - i- K 

whose importance will become clear very shortly, then the coefficients C Y ,  and p,, of 
the series expansion (3.1), (3.2) are given by the recurrence relations 

(3.4) 
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Mzz(n + l , n ) = ( ~ ’ + j / 2 + ; + ~ + n  - v / 2 ) ( j / 2 + 1 - ~ + n - v / 2 ) - ~ ’ ( n  + I ) .  (3.8) 
From (3.5)-(3.8) one derives the expressions for the trace and the determinant of the 
matrix M ( n  + 1, n )  

(3.9) 

(3.10) 

Tr M ( n  + 1, n ) = (j/2 + $ + S + n - v/2)(j/2 + $ - S + n - v/2) - K 2(v + l), 

Det M ( n  + 1, n )  = - ~ ~ ( n  - v ) (n  + 1). 

Equation (3.4) is supplemented by the condition 

( Y o = K ,  2 po= --(K2+j/2+f+S -U/2), (3.11) 

which guarantees the regularity of 4 ( z ) ,  f ( z )  at the singular point z = 0 of the 
differential equations (2.15), (2.16). From (3.4)-(3.8) one finds that am, P m  are entire 
functions of K~ and v with j and S as parameters; in particular cy, + p m  is a polynomial 
of degree m in K’ and of degree 2m + 1 in U .  Thus for each pair of values K ~ ,  v one 
obtains a solution 4 ( z ) , f ( z )  of equations (2.15), (2.16). By (3.11) these solutions are 
regular at the origin, but in general they do not belong to the space of entire functions. 
(In particular, there is branching of the solutions at the singular point z = K’ of (2.15), 
(2,16).) In order to pick out the entire functions, a further implicit relation between 
K~ and U (containingj and S as parameters) 

$ ( K ~ ,  v ; j ,  S )  = O  (3.12) 

is needed, which determines v and therefore E and A uniquely in each state i 
2 vi =Xi(K ; i, S ) ,  i =o ,  1 , 2 , .  . . , 

(3.13) 

Because there is an infinity of branches in (3.13) equation (3.12) is in general a 
transcendental equation. We shall derive this equation in the next section. In this 
section we show that (3.12) can become an algebraic equation for integer values of 
U = m (m = 0, 1 , 2 , .  . .j. The loci for U = m in a plot of A against K~ are a series of 
straight lines (see equations (2.9), (3.3) and the figures) which we call baselines in 
accordance with the notation in the theory of the dynamical Jahn-Teller effect. We 
therefore state that part of the eigenvalues on the baselines are determined by algebraic 
equations. In order to see this, note that terminating Neumann series are entire 
functions. For U = m, Det M ( m  + 1, m) = 0. Equation (3.4) therefore allows for ter- 
minating Neumann series 

1 
Ei ( K  ’; j ,  8) = ;,%‘xi ( K  *; j ,  6) - j / 2  - K - 3. 

a m + k  =o, @m+k = 0 ,  k = 1,2,. . . 
provided that 

(3.14) 

But I) ( K ~ ,  m ; j ,  6) is a polynomial of mth degree in K ~ .  Therefore (3.14) is an algebraic 
equation with m values of K’ as solutions. Those roots K 2,  which are real and positive, 
determine by (2.9), (3.3) eigenvalues of the Hamiltonian. The other roots are 
unphysical. Insertion of the 1 physical roots ( I  s m )  in the expressions (3.4H3.8) for 
cy,, pn (n  s m )  determines 1 eigenfunctions of the Schrodinger equation (2.15), (2.16). 
It should be noted that, while the Neumann series terminate, the power series for 
4 ( z ) ,  f ( z )  do not terminate under these conditions. This observation demonstrates 
the convenience of the expansion in Neumann series. The conditions for terminating 

2 
cym +pm = $ ( K  , m ; j ,  S ) = o .  



3498 H G Reik, H Nusser and L A Amarante Ribeiro 

Neumann series on the baselines U = 1 and U = 2 are reproduced here: 

$ ( K  ’, U = 1 ; j ,  8 )  = K ’ ( j  + 1 + 2s )  - ( j / 2  + 1 + 8 ) ( j / 2  - s ) ( j / 2  + a), (3.15) 

$ (K ’ ,  U = 2 ; j ,  8 )  

= - 8 ~ ~ ( j / 2  +$+a) + K ’ { ( j / 2  - i- 8 ) ( j / 2  -;+ 8) (3 j /2  + ;+ 38)  

+ ( j / 2  + i + 8)( j / 2  + f - 8) (3 j /2  + f + 38)) 

- ( j /  2 + ; + s )( j / 2  + 1 - s ) ( j / 2  + ; + 8)  

x ( j / 2 4 - 8 ) ( j / 2 - 3 + 8 ) .  (3.16) 

Equations (3.15), (3.16) for S = -t were first given by Judd (1979) using a different 
method. 

For j = -1 one has 

(3.17) 

(see equations (3.15), (3.16) as example). Therefore by (2.28) the branches h i ( ~ ’ , j  = 
-$,a) intersect the baselines, producing accidental double degeneracy at the inter- 
sections (see figures 1-3). Furthermore, for S =-: 

$ ( K 2 ,  U = m ;  j = -$, 8) = -$ (K ’ ,  U = m ; j = -5,  1 -8 -3) 1 

(3.18) 

i.e. all energy levels are on baselines: one has the energy level scheme of a displaced 
harmonic oscillator. This was first observed by Judd (1977) by inspection of the 
Longuet Higgins recurrence relations. Schmutz (1980) gave a very elegant explana- 
tion: he showed that the Longuet Higgins recurrence relation corresponds to a 
Hamiltonian of a displaced paraboson oscillator (Mukunda et a1 1980, Sharma et a1 
1981), whose irreducible representations can be labelled by j ,  and where j = -1 is the 
bosonic case. Judd’s observation has been used by Barentzen (1979; Barentzen et a1 
1981) in a perturbative treatment of the dynamical Jahn-Teller effect with j + f as the 
expansion parameter. 

Apart from these solutions there exist simple solutions for the ground state for 
j # - 1. Take U = 0. Then the condition for terminating Neumann series 

4(Kz,U = m ; j = - ; , ~ = - T ) = o ,  1 

cy0 +po = - ( j / 2  +$+a)  = 0 (3.19) 

is independent of the coupling strength. We therefore get q!~(z) and f(z) as just one 
modified Bessel function for all energies on the baseline U = 0 provided j and 8 satisfy 
equation (3.19). Having dealt with simple cases and algebraic equations for the 
eigenvalues, we proceed in the next section to the determination of the eigenvalues 
in the general case. 

4. The eigenvalues 

The recurrence relations (3.4) determine an, f i n  for given  cy,,-^, pn- l ,  i.e. higher 
expansion coefficients are calculated from below, starting with a0, P o  from equation 
(3.11). Define 

wn = P n / a n  3 (4.1) 
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w‘,“ = (w, +M11(n + 1, n)/M1z(n + 1, n))M& (n + 1, n )  

~ ~ ~ M z z ~ n + ~ , n ~ / M l z ~ n + ~ , n ~ + M l l ~ n + ~ , n + ~ ~ / ~ 1 z ~ n + ~ , ~ + ~ ~ ~ ~  
x (Det M ( n  + 1, n))-’, (4.2) 

and insert the expressions for a,,, P,. Thus W!,” calculated from below is a rational 
function of K ’ ,  U with j ,  S as parameters. 

On the other hand we might as well solve (3.4) for a,, P,  in terms of a,+l, &+I, 
i.e. determine a,, P,, from above. This gives a second relation for w, and W!,” 

- M l l ( n + 1 , n ) w , + l + M Z l ( ~ + + , n )  - _ -  Mll(n+l,n) w, = 
M l Z b  + 1, n ) W , + l  -Mzz(n + 1, n) Mdn + 1, n )  

(4.3) 

W!,l) =(l+u!,l)w;l:l (4.4) 

Det M ( n  + 1, n )  + 
M d n  + 1, n)(Mzz(n + 1, n)-M1z(n + 1, n)w,+1)’ 

U!,” = (-Det M ( n  +2, n + 1))[M& (n +2, n + l)(Mzz(n + 1, n)/Mlz(n + 1, n )  
+Mll(n +2, n + l)/Mlz(n +2, n + 1)) 
x (Mzz(n + 2, n + l)/M1z(n + 2, 12 + 1) 
+M11(n +3, n +2)/M12(n +3, n +2))]-1. (4.5) 

The right-hand side of (4.4) can be turned into a continued fraction 

which is in general a transcendental function of the variables K ’ ,  U and the parameters 
j ,  S and gives WF) from above. 

To determine the energy eigenvalues, fix the parameters j ,  6 and the interaction 
constant K ’ .  Then equate the rational and the transcendental function of U, which 
determine W!,” from below and above. We interpret (4.6) as this equation with the 
rational function (4.2) on the LHS. The infinitely many roots of U from (4.6) give by 
(3.3) the energy eigenvalues E .  The value of n in (4.6) is immaterial; one could in 
fact start from n = 0 as is often done in the mathematical literature (Ince 1928, Strutt 
1932, Erdelyi et al 1955). We determine n for computational convenience. 

In order to do this, consider U:’’ as a function of U for fixed values of K 2 , j ,  S. 
Note that by (4.9, (3.5)-(3.8), (3.10) 

Therefore, for U given, there is a lower bound 
following conditions 

for the integers n defined by the 

N 3 U ,  (4.8) 

la ;l’ I c a, n 2N. (4.9) 
Equations (4.7)-(4.9) are illustrated in table 1; the values of a:” are presented for 
three different sets of data which correspond to solutions. The integer k is also given 
for the three cases. 
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Table 1. The coefficients U 

K 2 = 1  K ~ =  1.55 K ' =  1.55 
U = 1.569 91 
j =  1, s = o  
N = 2  A=5 A = 4  

U = 3.293 04 
j= -0 .5 ,8=-1 .5  

U = 0.988 85 
j = -0.5, S = -1.5 - 

n a ,  a, an 

0 2.591 146 x lo- '  -9.665 076 x 8.381 280 x 

2 6.766 662 x lo-' -2.068 532 x lo- '  1.130 302 x 10' 
3 4 . 1 1 3 5 9 9 ~ 1 0 - ~  -1.096 550x 10" 2.797 979 x lo-' 
4 2.794 863 x 6.544 513 x lo-' 1.386 903 x lo-' 
5 2.031 201 x lo-' 1.980 296x lo-' 8.528 809x lo-' 
6 1.546 167x 1.057 820 x lo-' 5.849 654 x 
7 1.217 789x lo-* 6.798 694 x 4.289 888 x lo-' 
8 9.847 036 x 4.806 234 x lo-* 3.293 061 x 

8.130 795 x 3.604 610x lo-' 2.613 626 x 9 
10 6.829 487 x 1 0 - ~  2.815 751 :I: lo-' 2.128 047 x 

11) i l l  I11 

1 1.494 599 x lo-' -2.006 342 x lo-' -1.927 225 X 10' 

Conversely, choose an integer N and require 

l U " I 4 ,  n 3 N .  (4.10) 

Then equation (4.5) gives an upper bound for U 

U s V ( N ;  K 2 , j ,  8) .  (4.1 l a  ) 

We adopt this second point of view, i.e. we choose N and restrict U by (4.110), or, 
if N s V ( N ;  K ~ ,  j ,  S ) ,  by 

U S N .  (4.11b) 

Then by Worpitzky's theorem (Wall 1948, Henrici 1977) the continued fraction W g )  
equation (4.6) is uniformly convergent and its value and the values of all its 
approximants are inside the circular domain 

;w$ -4 /3 i s3  ( 4 . 1 2 ~ )  

in the complex Wg)  plane. This is true for complex values of a:'. As in our case 
the a!,' are real, the continued fraction is real and its value is located on the real 
diameter of the Worpitzky circle 

$5 WE' s 2 ,  (4.126) 

The continued fraction W$' is therefore bounded from above and below and is a 
smooth function of U. In order to calculate this function, i.e. the actual location of 
the continued fraction with a given accuracy, write equation (4.6) for n = N in the 
following way: 

Wz)+l = ( l + u g ! + l  W $ ) C Z ) ~ ~ ,  (4.13) w"' N = (1 f a  g'w$)+1 ) - I ,  

(4.14) 
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Then, as before, the continued fraction (4.14) lies in a circular domain in the complex 
W:Lm plane with the radius R N + m  = 3 whose centre is at Wbfh+, = $. (We disregard 
the additional information that aEym. . . aN+,,,+1 . . . are real.) We interpret (4.13) as 
consecutive Moebius transformations which map this circle into circles in the complex 
W N + m - l ,  ~ g L m - 2 ,  w K L ~ ,  W E )  planes. 

The transformation formulae 
w“’ - 

O,,, - (1  +a“‘)*wb!!,+l ) / ~ ( n ) ,  
C ( n ) = l + a ~ ” W b ~ l + l  +aL1’*W&,+l +(Wb;!,+tWb?!,!+l -R;+ l )a , ,  (I)* a n  (1) , 

(1) 

(1) 

R n  = (Rn+lla!?l>/lC(n)l, 
(4.15) 

show that on account of (4.10) all consecutive circles lie inside the first and 

(4.16) 

(of course the centres of all circles are on the real axis). How this works in practice 
is shown in table 2 for N = 5 .  The set of data is the same as in table 1 and the values 
of a:” from table 1 have been used to calculate table 2. The number of steps for the 
calculation of WL1) has been determined by the requirement R5 s Suppose that 
RN, equation (4.16), is smaller than the required accuracy. Then each point on the 
real diameter of the transformed circle is equally acceptable. A particular value is 
obtained by a particular assignment of real values to u~+, , ,+~ ( i  = 0, 1 ,2 ,  . . .) consistent 
with (4.10). This introduces a certain arbitrariness, which, under the conditions of 
Worpitzky’s theorem, has no numerical consequences. One possible choice is the 
replacement of the true continued fraction by a periodic continued fraction whose 
first m partial numerators U : ) .  . . are given by (4.5). The approximate value 
of the continued fraction is then equal to the fixed point of the Moebius transformation 
from W:Ym to W;) which lies inside the Worpitzky circle. 

will now be carried out in one step. Define 
the iterated matrix 

2 RN RN+I < R N t 2  < R N + m  = 5 

The elimination of , . . 

) Mll(n  +m, n )  M d n  +m, n )  
M21(n +m, n )  M d n  +m, n )  

MIl(n +m, n + m  - 1)  Mlz(n +m, n +m - 1) 
M21(n +m, n + m  - 1 )  MZ2(n +m, n + m  - 1)  

) X  . . .  

(4.17) 

(4.18) 

x (Det M ( N  +m, N))-‘. (4.19) 

Insert the expressions for aN,  P N  from (3.4). This gives W$‘) as a rational function 
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of the variable U with K', j ,  S as parameters. On the other hand we express the 
continued fraction W E )  by the fixed point of the Moebius formation 

(4.20) wF) = ( 1  + alv"'wti,,, 1-l 
which lies inside the Worpitzky circle. This fixed point is given by 

(4.21) 

a e )  = -Det M ( N  +2m,  N + m )  

x [M:z (N  + 2m, N + m)(M22(N + m, N ) / M ~ z ( N  + m, N )  

+M11(N + 2m, N + m)/M12(N + 2m, N + m ) )  

x (MZ2(N + 2m, N + m)/M12(N + 2m, N + m )  

+ M I 1 ( N  + 3m, N + 2m)/M12(N + 3m, N + 2m)]- l .  (4.22) 

Equating (4.19), (4.21) leads to the following series of implicit conditions (m = 1 , 2 ,  . . .) 
a N [ M l 1 ( N  f m ,  N ) + { + D e t M ( N + m ,  N)(2alv"))-1[l-(1+4a$;')1'2]}) 

x [M12(N + m, N)(Mzz(N + m, N ) / M I z ( N  + m, N )  

+Mll(N +2m, N +m)/M12(N +2m,  N + m))]-'! 

+pNM12(N + m, N )  = 0 (m = 1 ' 2 , .  .) 

(4.23) 

which approximate all eigenvalues v below the upper bound (4.11).  The convergence 
with increasing m is very rapid, the more the larger N (see the next section). In this 
paper we choose N = 10. Then for S = - a  and m = 1 we find agreement in eight 
decimal places with all Thorson-Moffitt eigenvalues. 

In figure 1 we plot the energy eigenvalues for j = -1 and resonance with respect 
to one photon absorption. Every second RWA doublet is indicated as a dotted line; 
the RWA singlet ground state coincides with A = O .  In figures 2 and 3 the energy 
eigenvalues are given for j = -1 and resonance with respect to three and five photons. 
Equivalently in small polaron theory the bare bandwidth is equal to three and five 
times the phonon energy. The lowest small polaron band is formed by the lowest 
branch (as lower limit) and the lower branch of the lowest doublet (as upper limit). 
The figures show that if the bare bandwidth is larger than the phonon energy, then 
the polaron bandwidth does not go to zero as the interaction constant K~ is increased. 
This result of the exact calculation is in disagreement with Holstein's adiabatic 
treatment (Holstein 1959). In figures 4-6 the energy eigenvalues are plotted for j = 1 
and S = -1, - 1 ,  -1, 0, $ , 1 .  For S = - 1  the energy of the ground state coincides with 
the baseline v = 0 in accordance with equation (3.19).  In all the figures the dependence 
of the eigenvalues on the interaction constant and the parameter S is very similar to 
that found for the (s + p )  X I'lu pseudo Jahn-Teller system (O'Brien 1976, Grevsmuhl 
1981). 

5. Discussion 

In this section we discuss the range of applicability of equation (4.23),  a few special 
solutions and give an intuitive interpretation of this equation. 
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- -  

Figure 1. Energy eigenvalues A against interaction 
constant t i 2  for j = ~ i, (5 = 0 (and 8 = - 1.1. Dotted 
lines: every second RWA doublet. 

Figure 2. Energy eigenvalues h against intcractlon 
constant t i 2  for ; = - i ,  8 = - 1 land 6 = - 1 I 

Equation (4.23) still makes sense even for ja ' I ;> provided the radicand 1 -? itu 
is positive; in fact the equation remains valid under this condition as shown by the 
parabola theorem (Wall 1948, Jones and Thron 1980'1. The convergence of the roots 
of (4.23) towards the eigenvalues is slower than under the proper Worpitzky conditions. 

We shall now discuss a few special solutions of (4.23); we refer to the less stringent 
condition al;"' 3 -' 1. 

Suppose we have chosen j and S and the interaction constant K' in such a way 
that there is an isolated exact solution on baseline k .  A necessary condition is that 
vor c = k ,  a,, a -$, IZ 2 k .  The solution is picked out by equation 14.23). Consider 
first the lowest possible value of N = k .  Then Det M ( k  + m, k ) = 0 and M I  I (  k f U ? ,  k 1 = 
MI2(k + m, k )  (take m = 1 in equations (3.5), (3.6) as an example). Therefore equation 
(4.23) reduces to (xk + P k  = 0, i.e. the condition for isolated exact solutions on baseline 
k .  Consider next any value A' 3 k + 1: then, for the isolated exact solution ah- = 0,. = 0, 
which also satisfies (4.23). 

Apart from the isolated exact solutions of Judd's type other less simple solutions 
on the baselines exist. The last column of table 1 gives an example. Here I' -- 1 but 
U', ' '  < - i, therefore equation (4.23) is not applicable for N = 1; (I I t 0 ,  * 0 (see figure 
31. A further example is ~ ' = 0 . 5 5 ,  j = -4, S = -' 2. The non-Juddian solutions on 
baselines do only occur for IS > i. 

( 1 )  
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1 2 3 
x2 

Figure 3. Energy eigenvalues A against interaction 
constant K~ for j = -;, S = 1 [and 6 = -+). 

5 
x 

0 

1 2 3 
Ki 

Figure 4. Energy eigenvalues A against interaction 
constant K * .  Full lines: angular momentum J = 3, 
6 = O a n d J  = -;, S = -4; broken lines: J = $, S = -4 
a n d J =  -4,s = O .  

An intuitive interpretation of equation (4.23) can be given in the following way. 
Any branch in figures 1-6 intersects the baselines a number of times before it approaches 
one baseline asymptotically for K~ + CO. Consider an example in which two consecutive 
intersections are Juddian on different baselines; in between the branch is in the strip 
N - 1 < v s N.  The finite Neumann series for U = N is embedded in the infinite 
Neumann series in the strip. An intuitively appealing generalisation of the isolated 
exact solution is obtained by studying the eigenvalue problem associated with the 
recurrence relation (4.18), 

The two eigenvalues 

A = $Tr  M ( N  + m, N ) *  (2 Tr M ( N  + m, N ) *  -Det M ( N  + m, N))’” (5.2) 

are real. Denote the eigenvalue with the lower absolute value by Al. Then the 
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b, 

1 2 3 1 2 3 
K2 KZ 

Figure 5. Energy eigenvalues A against interaction 
constant K ’ .  Full lines: J = 2, S = 1 and J = -2, S = 
-1; broken lines: J = 3, S = -1 and J = -2, S = i. 

Figure 6. Energy eigenvalues A against interaction 
constant K ~ ,  Full lines: J = f ,  6 = 1 and J = - f ,  
6 = -2; broken lines: J = 2,s = - f and J = - 2 ,  s = 1. 

eigenvector must satisfy the equations (3.11), (3.4) and 

( Y N ( M ~ ~ ( N  + m, N )  - A1(N + m, N ) )  + P N h f 1 2 ( N  + m, N )  = 0 
(5.3) 

As for U = N, A l ( N  + m, N )  = 0, equations (5.3) contain Judd’s isolated exact solution 
as eigenvector of (5.1) with the eigenvalue A l ( N  + m, N )  = 0. We state the following 
additional facts without proof. Outside the baselines equations (5.3) and (4.23) have 
a very similar appearance. (Insert A1 in (5.3) and compare with (4.23).) Equation 
(5.3) holds for real values of AI i.e. under the conditions for the parabola theorem. 
The roots of equations (4.23) and (5.3) converge to the same limit as m +CO.  In fact, 
the two equations reflect the element of arbitrariness in the estimate of the continued 
fraction. They are therefore mathematically equivalent. Equation (5.3) could have 
been derived along similar lines to (4.23) without referring to the eigenvalue problem 
(5.1). 

However, because (5.3) is a consequence of (5.1) as well, we observe that the 
energy eigenvalues in the strip N - 1 < U  s N are selected in such a way as to make 
the expansion coefficients C Y N + ~ ,  PN+m (m = 1 , 2 , .  , .) as small as possible under the 
given conditions j ,  8, K ’. This elucidates how the entire functions are picked out from 
the other solutions of (2.15), (2.16). 

(m  = 1 , 2 , .  . .). 
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